Table 3 (cont.)
Molecule A, piperidine rings

	Y	
$\mathrm{C}-\mathrm{N}-\mathrm{C}(1)$	$115.2(7)$	$115.0(8)$
$\mathrm{C}-\mathrm{N}-\mathrm{C}(5)$	$116.5(6)$	$113.5(5)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	$111.3(8)$	$112.7(6)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$111.0(7)$	$110.1(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109.4(7)$	$110.9(1.0)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$111.0(1.1)$	$111.9(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.9(8)$	$109.1(8)$

Table 4. Selected mean planes in (II)
Molecule B
Plane L : $\mathrm{C}(4), \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(7)-\mathrm{C}(12)$
$10.3246 x+6.5210 y+1.6107 z=3.2874$
Plane $M: \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5), \mathrm{C}(6)$
$-13.1911 x+6.5092 y+9.0672 z=5 \cdot 5720$
Molecule A
Plane N : $\mathrm{N}(51), \mathrm{N}(52), \mathrm{C}(57)-\mathrm{C}(62)$
$0.4150 x-4.6686 y+15.0215 z=2.4422$
Plane $O: \mathrm{C}(21), \mathrm{C}(22), \mathrm{C}(24), \mathrm{C}(25)$
$10.3703 x+6.98037 y-11.3648 z=2.7031$
Plane P: C(31), C(32), C(34), C(35)
$12.4612 x+5.7084 y-14.8678 z=6.8596$
Plane $Q: \mathrm{C}(52), \mathrm{C}(53), \mathrm{C}(55), \mathrm{C}(56)$
$0.6833 x+7.4675 y+8.9196 z=-3.3344$
Angles between planes (${ }^{\circ}$)

$L-M$	75.42	$N-P$	134.28
$L-N$	92.16	$O-P$	12.64
$N-O$	132.16	$N-Q$	91.30

$1.40 \AA$). This is a typical value for N adjacent to an aromatic ring, identical with $\mathrm{C}(60)-\mathrm{N}(53)$ and $\mathrm{C}(61)-\mathrm{N}(54)$ for the piperidine substituents in A. In A $\mathrm{C}(57)-\mathrm{N}(51)$ and $\mathrm{C}(58)-\mathrm{N}(52)$ are much shorter $(1.300 \AA)$ and $\mathrm{C}(57)-\mathrm{C}(58)$ and $\mathrm{C}(60)-\mathrm{C}(61)$
average $1.494 \AA$, indicating little or no conjugation between the diene systems $C(60)=C(59)-$ $\mathrm{C}(58)=\mathrm{N}(52) \quad$ and $\quad \mathrm{C}(61)=\mathrm{C}(62)-\mathrm{C}(58)=\mathrm{N}(51)$. $\mathrm{N}(51), \mathrm{N}(52), \mathrm{C}(51)-\mathrm{C}(62)$ are all within $0.007 \AA$ of the mean plane containing them; $\mathrm{C}(54)$ is $0.015 \AA$ out of this plane.

One piperidine group lies on either side of the benzimidazole ring in A, connected to it equatorially. $\mathrm{N}(53)$ and $\mathrm{N}(54)$ are $0.031 \AA$ above and below the benzimidazole plane. The normals to the mean planes $\mathrm{C}(21), \mathrm{C}(22), \mathrm{C}(24), \mathrm{C}(25)$ and $\mathrm{C}(31), \mathrm{C}(32), \mathrm{C}(34)$, $\mathrm{C}(35)$ intersect at 12.6° and make angles to that of the benzimidazole plane of $134 \cdot 3$ and $132 \cdot 1^{\circ}$ respectively.

Equations for selected mean planes are given in Table 4.

Fig. 3 shows that there is no possibility of electronic interaction between the π systems of A and B in (II). In the related black complexes the absence of the bulky piperidine rings must allow the molecular planes of donor and acceptor to be parallel rather than at right angles as observed in (II).

We thank Professor H. Suschitzky and Dr A. Jefferson, Salford University, for the crystals and for valuable discussions, and Professor J. Iball for continual help and encouragement.

References

Dik-Edixhaven, C. J., Schenk, H. \& van der Meer, H. (1973). Cryst. Struct. Commun. 2, 23-24.

Herbert, J. A. L. \& Suschitzky, H. (1973). Chem. Ind. (London), p. 473.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX 76. Univ. of Cambridge, England.

Acta Cryst. (1978). B34, 2150-2156

The Crystal Structure of Guanidinium Pyrophosphate Monoperhydrate Sesquihydrate

By J. M. Adams and Vijayalakshmi Ramdas
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 1NE, Wales

(Received 8 December 1977; accepted 14 January 1978)
$\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{l}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}_{2} \cdot 1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right.$ crystallizes in space group $\mathrm{P} 2_{1} / a$ with $a=17.84$ (3), $b=14 \cdot 15$ (2), $c=$ 17.72 (3) $\AA, \beta=116.8$ (2) ${ }^{\circ}$; each asymmetric unit consists of twice the above formula. The crystals are extremely stable carriers of hydrogen peroxide. There are two types of hydrogen-bonded chain in the structure: $\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O} \cdots\right)_{n}$ and $\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O}_{2} \cdots\right)_{n}$. The remaining water molecules and the guanidinium ions hold these chains together. Each $\mathrm{H}_{2} \mathrm{O}_{2}$ molecule donates two hydrogen bonds and receives three.

Introduction

This study brings together two separate lines of investigation pursued in these laboratories: (i) multiple hydrogen bonding to O atoms through guanidinium cations and (ii) research into relatively stable perhydrates, i.e. compounds containing $\mathrm{H}_{2} \mathrm{O}_{2}$ of crystallization. It has already been suggested (Adams, Pritchard \& Thomas, 1976) that it might be possible to design stable carriers of $\mathrm{H}_{2} \mathrm{O}_{2}$ by attempting to maximize the number of hydrogen bonds in the structure by the use of suitable cations and anions.

Many perhydrates are relatively unstable, decomposing typically in minutes or a few days under laboratory conditions. Further, there is often a marked dependence on humidity. Sodium percarbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}_{2}\right.$; Adams \& Pritchard, 1977), for example, is stable for many months at a relative humidity of 50% but is decomposed rapidly at, say, 90% rh. Guanidinium pyrophosphate monoperhydrate sesquihydrate is, therefore, among the most stable perhydrates since after 7 d at 98% rh (293 K) over 60% of the original active oxygen is retained.*

Experimental

Colourless needles of the title compound were formed by evaporation of a solution made by dissolving guanidinium pyrophosphate monohydrate in 50% $(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{O}_{2}$. The presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ within the crystals was tested by use of acid $\mathrm{Ti}^{\mathrm{IV}^{\mathrm{V}}}$ solutions and iodometrically. Guinier photographs were also used to test that one phase was produced consistently by the experimental procedures. Thermogravimetric analysis gave a total weight loss of 12.8% occurring in one single smooth curve (theoretical 12.85%) which was completed by 390 K . A complicated set of endotherms and exotherms was obtained from differential scanning calorimetry, typical of other perhydrates (e.g. $\mathrm{Na}_{2} \mathrm{CO}_{3} .1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}_{2}$).

Cell parameters (Table 1) were determined from oscillation and Weissenberg photographs and were refined by a least-squares procedure. The systematic absences, $h 0 l h=2 n$, $0 k 0 k=2 n$, corresponded to

[^0]Table 1. Crystal data

$a=17.84$ (3) $\dot{\text { A }}$	Space group: $P 2_{1} / a$
$b=14.15$ (2)	$Z=4$
$c=17.72(3)$	$d_{o}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation)
$\beta=116.8$ (2) ${ }^{\circ}$	$d_{c}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}$
$\lambda(\mathrm{Cu} K a)=1.5418 \AA$	
Asymmetric unit: 2[C($\mathrm{P}_{2} \mathrm{O}_{7} .2 \mathrm{H}_{2} \mathrm{O}_{2} .3 \mathrm{H}_{2} \mathrm{O}$

space group $P 2_{1} / a$. Film packs ($0-8 k l, 0-h 8 l$ and $h k 0$) were used to collect intensities. The films were scanned and the intensities corrected for Lorentz and polarization effects and put on a common scale by the SRC Microdensitometer Service at the Atlas Computer Laboratory. Two separate sets of data were prepared. The films taken about \mathbf{b} were considerably streaked* and hence those data had a poor R. One set of data, therefore, contained all the reflections while the other had only the data collected about a together with h3l and $h 5 l$ which were used for scaling purposes.

Scattering factors were taken from International Tables for X-ray Crystallography (1974). All computations except the structure solution were undertaken with the XRAY system (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972).

Structure determination

The structure was solved from all 3277 measured intensities. The reflections too weak to be measured by the microdensitometer were added and given an F value equal to half the lowest observed F. A Wilson plot gave an overall temperature factor of $1.0 \AA^{2}$. The 350 planes with $E>1.6$ were used to solve the structure with MULTAN 76 (Germain, Main \& Woolfson, 1971). Despite the relatively large number of atoms in the asymmetric unit (56 non-hydrogen atoms) the structure solution proceeded smoothly and both the pyrophosphate anions in the asymmetric unit were easily recognized in an E map computed from the set of planes with the highest figure of merit. The other nonhydrogen atoms were located by successive difference syntheses. Refinement ceased (even with anisotropic thermal parameters) at $R=0.18$ with this full data set.

At this stage further refinement was attempted with the better a axis data (together with $h 3 l$ and $h 5 l$). This brought R down to only $0 \cdot 15$. The use of different weighting schemes did not help, nor did a trial with subcell data for refinement. The data were examined for evidence of extinction effects and seven reflections were omitted ($002,005,057,40 \overline{6}, 62 \overline{9}, 800$ and 802) which reduced R to $0 \cdot 138$. A further 19 reflections (marked with an asterisk in the structure factor tables) which were somewhat less severely affected by extinction were also removed from the refinement causing R to fall to $0 \cdot 12$. However, the temperature factors of some of the O atoms of one of the pyrophosphate groups became high. The effect was very pronounced on the bridge

[^1]

Fig. 1. Projections of part of the structure on to (010) showing in each case the pyrophosphate groups and the $\mathrm{O}(87)$ water molecule. Shown are (a) four of the eight guanidinium groups, one $\mathrm{H}_{2} \mathrm{O}_{2}$ and one $\mathrm{H}_{2} \mathrm{O}$ molecule and (b) the remaining four guanidinium groups, $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules which are related to those shown in (a) by a non-crystallographic $b / 2$ translation.
$O(21)$ and the terminal $O(22)$ and $O(27)$. A difference map showed small but significant electron density peaks suggesting that part of this pyrophosphate group was inverted to occupy the same orientation as the equivalent pyrophosphate $b / 2$ above. While new positions for $\mathrm{O}(21), \mathrm{O}(22)$ and $\mathrm{O}(27)$ [i.e. $\mathrm{O}(211)$, $O(221)$ and $O(271)]$ could be obtained from the electron density map, the positions for the P atom and the other O atoms could not be distinguished (they overlapped the atoms of the non-inverted pyrophosphate). The positions for these atoms were calculated from the orientation of the pyrophosphate $b / 2$ away. Refinement (including the site occupancy of these pyrophosphate groups) reduced R to 0.092 with site occupancy of 0.68 for the original pyrophosphate and 0.32 for the inverted orientation.*

It did not prove possible to locate the H atoms. Unit weights were used throughout. An (010) projection of part of the structure is shown in Fig. 1. The atomic coordinates and bond distances and angles are in Tables 2 and 3.

[^2]
(a)

(b)

Fig. 2. Projections of pyrophosphate anions (a) PYR1 and (b) PYR2 on to (100) showing their different conformations.

Discussion

The pyrophosphate anion $\mathrm{P}(11), \mathrm{P}(12)$ etc. (PYR1) is normal with a staggered conformation (Fig. 2); the bridge angle is usual at $131 \cdot 6^{\circ}$. This group and those equivalent by symmetry ($\frac{1}{2}-x, \frac{1}{2}+y, 1-z$) are linked into infinite chains by $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules (Fig. 3). The second pyrophosphate anion $\mathrm{P}(21), \mathrm{P}(22)$ etc. (PYR2) is disordered between two orientations (with site occupancies $0.68,0.32$) which are related by a noncrystallographic twofold axis through the P atoms (Fig. 4). Equivalent pyrophosphate ions are again linked into infinite chains (Fig. 3) but this time by water molecules.

Table 2. Fractional atomic coordinates and their e.s.d.'s $\left(\times 10^{4}\right)$

	x	y	z
P(11)	3656 (2)	2457 (2)	4486 (2)
$\mathrm{P}(12)$	2312 (3)	2426 (2)	5013 (2)
$\mathrm{O}(11)$	2698 (6)	2543 (8)	4363 (5)
$\mathrm{O}(12)$	4232 (5)	2430 (6)	5408 (5)
$\mathrm{O}(13)$	3671 (7)	1564 (5)	4013 (6)
$\mathrm{O}(14)$	3771 (7)	3333 (6)	4045 (6)
O(15)	2580 (8)	1480 (5)	5439 (7)
$\mathrm{O}(16)$	2622 (8)	3241 (7)	5645 (7)
$\mathrm{O}(17)$	1405 (6)	2464 (8)	4469 (6)
P (21)	1619 (5)	4734 (4)	9444 (4)
$\mathrm{P}(22)$	3423 (5)	4752 (4)	10605 (3)
$\mathrm{O}(21)$	2465 (11)	4706 (11)	10379 (8)
$\mathrm{O}(22)$	1850 (11)	4691 (9)	8784 (6)
$\mathrm{O}(23)$	1198 (11)	3862 (10)	9571 (9)
O(24)	1234 (12)	5635 (10)	9535 (10)
$\mathrm{O}(25)$	3722 (10)	3869 (9)	10322 (9)
O(26)	3688 (11)	5660 (9)	10361 (9)
O(27)	3876 (10)	4736 (10)	11613 (9)
$\mathrm{O}(211)$	2588 (34)	4737 (30)	9673 (26)
O(221)	1110 (20)	4687 (22)	8371 (18)
O(271)	3192 (24)	4700 (19)	11198 (15)
O(81)	1489 (8)	2272 (8)	638 (6)
O(86)	1441 (9)	7223 (9)	659 (7)
O(87)	5975 (6)	2527 (7)	5918.(6)
O(82)	2675 (9)	4671 (9)	3559 (8)
O(83)	3101 (10)	5537 (8)	3729 (7)
O(84)	2606 (8)	167 (8)	3536 (7)
O(85)	3154 (9)	-649 (7)	3712 (7)
C(1)	3500 (11)	2236 (10)	1919 (8)
$\mathrm{N}(11)$	3474 (10)	1424 (8)	2284 (7)
N(12)	3545 (10)	3061 (8)	2317 (8)
N(13)	3504 (8)	2254 (8)	1186 (7)
C(2)	984 (14)	4506 (11)	1486 (10)
N(21)	711 (10)	4572 (9)	2116 (9)
N(22)	450 (9)	4295 (9)	724 (8)
N(23)	1795 (13)	4651 (11)	1731 (8)
C(3)	602 (18)	20 (9)	4189 (11)
$\mathrm{N}(31)$	308 (9)	912 (8)	4233 (8)
N(32)	1394 (14)	-109 (9)	4296 (9)
$\mathrm{N}(33)$	71 (10)	-719 (9)	4062 (8)
C(4)	587 (16)	4821 (12)	4186 (10)
$\mathrm{N}(41)$	1347 (15)	4949 (8)	4254 (10)
$\mathrm{N}(42)$	239 (11)	3941 (8)	4129 (8)
N(43)	34 (10)	5569 (8)	4080 (7)
C(5)	965 (13)	-489 (10)	1517 (10)
N(51)	1777 (12)	-366 (9)	1739 (8)
N(52)	672 (9)	-385 (8)	2119 (7)
N(53)	429 (9)	-698 (8)	746 (7)
C(6)	858 (13)	2037 (10)	2139 (9)
N (61)	404 (10)	1867 (9)	1325 (8)
N(62)	1645 (9)	2361 (10)	2416 (8)
N(63)	561 (11)	1917 (10)	2711 (9)
C(7)	897 (12)	7105 (9)	2308 (9)
N (71)	460 (10)	6877 (8)	1492 (8)
N (72)	565 (11)	6982 (10)	2848 (9)
N (73)	1652 (8)	7431 (11)	2571 (8)
C(8)	3510 (12)	7247 (10)	1942 (9)
$\mathrm{N}(81)$	3501 (8)	7263 (8)	1202 (7)
N(82)	3460 (11)	8071 (9)	2295 (7)
N(83)	3460 (10)	6418 (8)	2288 (8)

The orientational disorder does not affect the chain formation since the particular O atoms involved are very close in position whichever orientation is adopted.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{P}(11)-\mathrm{O}(11)$	1.626 (12)	$\mathrm{P}(11)-\mathrm{O}(11)-\mathrm{P}(12)$	131.6 (5)
$\mathrm{P}(11)-\mathrm{O}(12)$	1.487 (8)	$\mathrm{O}(11)-\mathrm{P}(11)-\mathrm{O}(12)$	108.2 (6)
$\mathrm{P}(11)-\mathrm{O}(13)$	1.523 (10)	$\mathrm{O}(11)-\mathrm{P}(11)-\mathrm{O}(13)$	105.4 (6)
$\mathrm{P}(11)-\mathrm{O}(14)$	1.528 (11)	$\mathrm{O}(11)-\mathrm{P}(11)-\mathrm{O}(14)$	104.2 (6)
$\mathrm{P}(12)-\mathrm{O}(11)$	1.594 (13)	$\mathrm{O}(12)-\mathrm{P}(11)-\mathrm{O}(13)$	114.0 (5)
$\mathrm{P}(12)-\mathrm{O}(15)$	1.504 (9)	$\mathrm{O}(12)-\mathrm{P}(11)-\mathrm{O}(14)$	113.4 (5)
$\mathrm{P}(12)-\mathrm{O}(16)$	1.526 (11)	$\mathrm{O}(13)-\mathrm{P}(11)-\mathrm{O}(14)$	$110 \cdot 5$ (6)
$\mathrm{P}(12)-\mathrm{O}(17)$	1.464 (10)	$\mathrm{O}(11)-\mathrm{P}(12)-\mathrm{O}(15)$	108.1 (7)
		$\mathrm{O}(11)-\mathrm{P}(12)-\mathrm{O}(16)$	108.6 (7)
		$\mathrm{O}(11)-\mathrm{P}(12)-\mathrm{O}(17)$	103.3 (6)
		$\mathrm{O}(15)-\mathrm{P}(12)-\mathrm{O}(16)$	112.1 (6)
		$\mathrm{O}(15)-\mathrm{P}(12)-\mathrm{O}(17)$	111.6 (7)
		$\mathrm{O}(16)-\mathrm{P}(12)-\mathrm{O}(17)$	112.4 (7)
$\mathrm{P}(21)-\mathrm{O}(21)$	1.664 (14)	$\mathrm{P}(21)-\mathrm{O}(21)-\mathrm{P}(22)$	$130 \cdot 3$ (13)
$\mathrm{P}(21)-\mathrm{O}(22)$	1.405 (20)	$\mathrm{O}(21)-\mathrm{P}(21)-\mathrm{O}(22)$	110.6 (11)
$\mathrm{P}(21)-\mathrm{O}(23)$	1.514 (19)	$\mathrm{O}(21)-\mathrm{P}(21)-\mathrm{O}(23)$	96.9 (8)
$\mathrm{P}(21)-\mathrm{O}(24)$	1.491 (19)	$\mathrm{O}(21)-\mathrm{P}(21)-\mathrm{O}(24)$	99.6 (8)
$\mathrm{P}(22)-\mathrm{O}(21)$	1.571 (23)	$\mathrm{O}(22)-\mathrm{P}(21)-\mathrm{O}(23)$	116.0 (10)
$\mathrm{P}(22)-\mathrm{O}(25)$	1.529 (18)	$\mathrm{O}(23)-\mathrm{P}(21)-\mathrm{O}(24)$	113.3 (13)
$\mathrm{P}(22)-\mathrm{O}(26)$	1.498 (18)	$\mathrm{O}(22)-\mathrm{P}(21)-\mathrm{O}(24)$	116.6 (10)
$\mathrm{P}(22)-\mathrm{O}(27)$	1.595 (15)	$\mathrm{O}(21)-\mathrm{P}(22)-\mathrm{O}(25)$	112.5 (9)
		$\mathrm{O}(21)-\mathrm{P}(22)-\mathrm{O}(26)$	114.1 (10)
		$\mathrm{O}(21)-\mathrm{P}(22)-\mathrm{O}(27)$	103.2 (10)
		$\mathrm{O}(25)-\mathrm{P}(22)-\mathrm{O}(26)$	113.9 (12)
		$\mathrm{O}(25)-\mathrm{P}(22)-\mathrm{O}(27)$	106.2 (8)
		$\mathrm{O}(26)-\mathrm{P}(22)-\mathrm{O}(27)$	105.5 (8)
$\mathrm{P}(21)-\mathrm{O}(211)$	1.58 (6)	$\mathrm{P}(21)-\mathrm{O}(211)-\mathrm{P}(22)$	$130 \cdot 0$ (3)
$\mathrm{P}(21)-\mathrm{O}(221)$	1.69 (2)	$\mathrm{O}(211)-\mathrm{P}(21)-\mathrm{P}(221)$	104.9 (22)
$\mathrm{P}(22)-\mathrm{O}(211)$	$1 \cdot 65$ (4)		
$\mathrm{P}(22)-\mathrm{O}(271)$	1.29 (4)	$\mathrm{O}(211)-\mathrm{P}(22)-\mathrm{O}(271)$	109.6 (28)

$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{N}(12)$	$120.0(15)$
$\mathrm{N}(11)-\mathrm{C}(1)-\mathrm{N}(13)$	$121.2(14)$
$\mathrm{N}(12)-\mathrm{C}(1)-\mathrm{N}(13)$	$118.6(14)$
$\mathrm{N}(21)-\mathrm{C}(2)-\mathrm{N}(22)$	$119.2(21)$
$\mathrm{N}(21)-\mathrm{C}(2)-\mathrm{N}(23)$	$116.5(14)$
$\mathrm{N}(22)-\mathrm{C}(2)-\mathrm{N}(23)$	$124.2(22)$
$\mathrm{N}(31)-\mathrm{C}(3)-\mathrm{N}(32)$	$121.1(18)$
$\mathrm{N}(32)-\mathrm{C}(3)-\mathrm{N}(33)$	$122.1(16)$
$\mathrm{N}(31)-\mathrm{C}(3)-\mathrm{N}(33)$	$116.6(26)$
$\mathrm{N}(41)-\mathrm{C}(4)-\mathrm{N}(42)$	$122.3(20)$
$\mathrm{N}(41)-\mathrm{C}(4)-\mathrm{N}(43)$	$122.4(17)$
$\mathrm{N}(42)-\mathrm{C}(4)-\mathrm{N}(43)$	$114.8(23)$
$\mathrm{N}(51)-\mathrm{C}(5)-\mathrm{N}(52)$	$119.3(13)$
$\mathrm{N}(51)-\mathrm{C}(5)-\mathrm{N}(53)$	$122.3(21)$
$\mathrm{N}(52)-\mathrm{C}(5)-\mathrm{N}(53)$	$118.2(19)$
$\mathrm{N}(61)-\mathrm{C}(6)-\mathrm{N}(62)$	$119.2(20)$
$\mathrm{N}(61)-\mathrm{C}(6)-\mathrm{N}(63)$	$122.8(20)$
$\mathrm{N}(62)-\mathrm{C}(6)-\mathrm{N}(63)$	$117.9(13)$
$\mathrm{N}(71)-\mathrm{C}(7)-\mathrm{N}(72)$	$120 \cdot 1(19)$
$\mathrm{N}(71)-\mathrm{C}(7)-\mathrm{N}(73)$	$118.8(21)$
$\mathrm{N}(721)-\mathrm{C}(7)-\mathrm{N}(73)$	$120.9(14)$
$\mathrm{N}(81)-\mathrm{C}(8)-\mathrm{N}(82)$	$118.5(14)$
$\mathrm{N}(81)-\mathrm{C}(8)-\mathrm{N}(83)$	$119.9(14)$
$\mathrm{N}(82)-\mathrm{C}(8)-\mathrm{N}(83)$	$120.9(18)$

This pyrophosphate group is staggered as in the related hydrate (Adams \& Ramdas, 1977) and PYR1: this is not always the case for pyrophosphates [e.g. Leung \& Calvo (1972) found for $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ a partly eclipsed conformation]. The bond lengths and angles in the

Fig. 3. Projections of the pyrophosphate chains on to (001).

Fig. 4. The two orientations of the pyrophosphate PYR2.
inverted orientation of PYR2 are rather poorly determined. There appear to be no abnormally short contacts caused by the disorder of the PYR2 molecules. The N atoms forming hydrogen bonds to O atoms of this group form alternative hydrogen bonds with slightly altered parameters (Table 4).

The guanidinium groups form hydrogen bonds (Fig. 5) which hold the $\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O} \cdots\right)_{n}$ and $\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O}_{2} \cdots\right)_{n}$ chains together. All the H atoms of these cations are used in hydrogen bonding except that $N(63)$ and $N(72)$ each form only one such bond. The bonds from $\mathrm{N}(21) \cdots \mathrm{O}(82)$ and $\mathrm{N}(52) \cdots \mathrm{O}(84)$ are also quite long. In this perhydrate there is one hydrogen bond from a guanidinium ion to the bridge $O(11)$. This feature is not seen in trisguanidinium hydrogen pyrophosphate (Adams \& Ramdas, 1976) but does occur in guanidinium pyrophosphate monohydrate (Adams \& Ramdas, 1977). This may be due to the overall negative charge residing

Table 4. Hydrogen-bonding geometry

E.s.d.'s for hydrogen-bond lengths are $0.02-0.03$ A. Bonds enclosed in \{\} brackets are the bonds formed to whichever inverted pyrophosphate is present.

$\mathrm{N}(11) \cdots \mathrm{O}(13)$	2.92 A	[$\mathrm{N}(52) \cdots \mathrm{O}(84)$	3.30] A
$\left\{\mathrm{N}(11) \cdots \mathrm{O}\left(22^{\text {i }}\right.\right.$)	2.99 ($\mathrm{N}(53) \cdots \mathrm{O}\left(26^{\mathrm{vi}}\right)$	2.84
($\mathrm{N}(11) \cdots \mathrm{O}\left(221^{1}\right)$	2.92)	$\mathrm{N}(53) \cdots \mathrm{O}\left(25^{1}\right)$	2.96
$\mathrm{N}(12) \cdots \mathrm{O}(14)$	2.92	$\mathrm{N}(61) \cdots \mathrm{O}(81)$	2.76
($\mathrm{N}(12) \cdots \mathrm{O}\left(27^{\text {II }}\right.$)	2.85	$\mathrm{N}(61) \cdots \mathrm{O}\left(25^{\mathrm{vl}}\right)$	2.81
($\mathrm{N}(12) \cdots \mathrm{O}\left(271^{\text {il }}\right.$)	2.93)	$\mathrm{N}(62) \ldots \mathrm{O}(81)$	3.04
$\mathrm{N}(13) \cdots \mathrm{O}\left(24^{\text {I }}\right.$)	2.82	$\mathrm{N}(62) \cdots \mathrm{O}(11)$	$3 \cdot 10$
$\mathrm{N}(13) \cdots \mathrm{O}\left(25^{11}\right)$	2.87	$\mathrm{N}(63) \cdots \mathrm{O}(17)$	2.89
$\mathrm{N}(21) \cdots \mathrm{O}\left(221^{\text {III }}\right)$	$3 \cdot 13$	$\mathrm{N}(71) \cdots \mathrm{O}(86)$	2.79
[$\mathrm{N}(21) \cdots \mathrm{O}(82)$	3.27]	$\mathrm{N}(71) \cdots \mathrm{O}\left(23^{\text {iii }}\right)$	2.89
$\mathrm{N}(22) \cdots \mathrm{O}\left(24^{\text {IIII }}\right)$	$2 \cdot 82$	$\mathrm{N}(72) \cdots \mathrm{O}\left(12^{v}\right)$	3.00
$\mathrm{N}(22) \cdots \mathrm{O}\left(23^{11}\right)$	2.95	$\mathrm{N}(73) \cdots \mathrm{O}$ (86)	3.24
$\mathrm{N}(23) \cdots \mathrm{O}(82)$	$2 \cdot 89$	$\mathrm{N}(73) \cdots \mathrm{O}\left(16^{v}\right)$	3.04
($\mathrm{N}(23) \cdots \mathrm{O}\left(27^{\text {il }}\right.$)	$3 \cdot 12$)	$\mathrm{N}(81) \cdots \mathrm{O}\left(23^{v}\right)$	2.82
($\mathrm{N}(23) \cdots \mathrm{O}\left(271^{\text {il }}\right.$)	$3 \cdot 13$	$\mathrm{N}(81) \cdots \mathrm{O}\left(26^{\text {vil }}\right)$	2.83
$\mathrm{N}(31) \cdots \mathrm{O}\left(14^{\text {lv }}\right.$)	$2 \cdot 82$	$\left\{\mathrm{N}(82) \cdots \mathrm{O}\left(22^{v}\right)\right.$	2.87
$\mathrm{N}(31) \cdots \mathrm{O}(17)$	2.84	($\mathrm{N}(82) \cdots \mathrm{O}\left(221^{\mathrm{v}}\right)$	2.79
$\mathrm{N}(32) \cdots \mathrm{O}\left(16^{1}\right)$	2.89	$\mathrm{N}(82) \cdots \mathrm{O}\left(87^{\text {vill }}\right)$	2.97
$\mathrm{N}(32) \cdots \mathrm{O}(84)$	3.02	(N(83) $\cdot \cdots \mathrm{O}\left(27^{\text {vil }}\right.$)	2.891
$\mathrm{N}(33) \cdots \mathrm{O}\left(12^{\text {l }}\right.$)	$2 \cdot 86$	$\mathrm{N}(83) \cdots \mathrm{O}\left(271^{\text {vil }}\right.$)	3.03
$\mathrm{N}(33) \cdots \mathrm{O}\left(87^{\prime}\right)$	3.11	$\mathrm{N}(83) \cdots \mathrm{O}(83)$	3.16
$\mathrm{N}(41) \cdots \mathrm{O}\left(15^{\mathrm{v}}\right)$	$2 \cdot 77$	$\mathrm{O}(81) \cdots \mathrm{O}\left(23^{\text {vil }}\right.$)	2.82
$\mathrm{N}(41) \cdots \mathrm{O}(82)$	$3 \cdot 14$	$\mathrm{O}(81) \cdots \mathrm{O}\left(26^{\text { }}\right.$)	2.83
$\mathrm{N}(42) \cdots \mathrm{O}\left(13^{\text {iv }}\right)$	$2 \cdot 80$	$\mathrm{O}(86) \cdots \mathrm{O}\left(24^{\text {vil }}\right.$)	2.90
$\mathrm{N}(42) \cdots \mathrm{O}(17)$	2.81	$\mathrm{O}(86) \cdots \mathrm{O}\left(25^{\mathrm{v}}\right)$	$2 \cdot 84$
$\mathrm{N}(43) \cdots \mathrm{O}\left(12^{\mathrm{v}}\right)$	2.89	$\mathrm{O}(87) \cdots \mathrm{O}(12)$	$2 \cdot 82$
$\mathrm{N}(43) \cdots \mathrm{O}\left(85^{\text {iv }}\right.$)	$3 \cdot 11$	$\mathrm{O}(87) \cdots \mathrm{O}\left(17^{\text {ix }}\right)$	2.99
$\mathrm{N}(51) \cdots \mathrm{O}(84)$	$2 \cdot 94$	$\mathrm{O}(82) \cdots \mathrm{O}(14)$	$2 \cdot 57$
$\mathrm{N}(51) \cdots \mathrm{O}\left(22^{1}\right)$	3.00	$\mathrm{O}(83) \cdots \mathrm{O}\left(15^{v}\right)$	$2 \cdot 65$
$\mathrm{N}(52) \cdots \mathrm{O}\left(27^{\mathrm{vl}}\right)$	3.05	O(84) . . O(13)	$2 \cdot 60$
		$\mathrm{O}(85) \cdots \mathrm{O}\left(16^{\text {i }}\right.$)	$2 \cdot 66$

Symmetry operations
(i) $\frac{1}{2}-x,-\frac{1}{2}+y, 1-z$
(vi) $-\frac{1}{2}+x, \frac{1}{2}-y,-1+z$
(ii) $x, y,-1+z$
(vii) $x, y,-1+z$
(iii) $-x, 1-y, 1-z$
(viii) $1-x, 1-y, 1-z$
(iv) $-\frac{1}{2}+x, \frac{1}{2}-y, z$
(ix) $\frac{1}{2}+x, \frac{1}{2}-y, z$
(v) $\frac{1}{2}-x, \frac{1}{2}+y, 1-z$
on the anion. The water molecules $O(81), O(86)$ and $O(87)$ all donate two hydrogen bonds to pyrophosphate O atoms and accept two hydrogen bonds from guanidinium ions (Fig. 6). O(87) has two other close contacts with O atoms of the $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules, i.e. $\mathrm{O}(83) 3 \cdot 11, \mathrm{O}(85) 2 \cdot 99 \AA$.

The bond lengths of the $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules ($\sim 1.4 \AA$) are shorter than the ideal value of $1.49 \AA$, but this effect has often been noted before (Pedersen, 1972) and ascribed to thermal motion or even to a small degree of random substitution of $\mathrm{H}_{2} \mathrm{O}_{2}$ by $\mathrm{H}_{2} \mathrm{O}$. The hydrogen bonds formed by these molecules are rather short at $\sim 2.6 \AA$, but are comparable with such bonds formed in other perhydrates (e.g. Adams \& Pritchard, 1976). The hydrogen bonding involving $\mathrm{H}_{2} \mathrm{O}_{2}$ is stronger than that for comparable hydrates. It might be supposed that perhydrates are of greater stability than related

Fig. 5. Projections of some of the guanidinium ions showing their hydrogen bonding; (a) $\mathrm{C}(1)$ on to (100), (b) $\mathrm{C}(3)$ on to (001), (c) $C(4)$ on to $(001),(d) C(8)$ on to (100).

Fig. 6. The hydrogen-bonding environments around the water molecules $O(81), O(86)$ and $O(87)$.

Fig. 7. The hydrogen-bonding schemes of the $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules $O(82), O(83)$ and $O(84), O(85)$.
hydrates. This is not found to be the case. One reason for this is that the solid hydrate is stabilized by the pressure of the $\mathrm{H}_{2} \mathrm{O}$ vapour in the atmosphere whereas no similar $\mathrm{H}_{2} \mathrm{O}_{2}$ vapour exists. The $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules here are somewhat unusual in that they accept three hydrogen bonds from guanidinium cations (Fig. 7). In the more usual case (e.g. oxalate perhydrates, Pedersen, 1969) the $\mathrm{H}_{2} \mathrm{O}_{2}$ species accept only two such bonds. It has been suggested (Pedersen, 1969) that the great stability of the urea-hydrogen peroxide adduct (Lu, Hughes \& Giguère, 1941) might arise because this is the only known perhydrate in which $\mathrm{H}_{2} \mathrm{O}_{2}$ donates two hydrogen bonds and also accepts four.

If we assume that the H atoms of the $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules lie along the hydrogen-bond direction then the dihedral angle calculated is 129° for the $\mathrm{O}(82)$, $\mathrm{O}(83)$ and 138° for the $\mathrm{O}(84), \mathrm{O}(85)$ molecule. This compares with a gas-phase value of 115° (Hunt, Leacock, Peters \& Hecht, 1965).

It is instructive to compare this perhydrate with guanidinium pyrophosphate monohydrate and the series of perhydrates formed by alkali-metal oxalates (Pedersen, 1969). In the first we have infinite chains of $\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O} \cdots\right)_{n}$ running through the structure; the repeat distance between these chains is given by the a axis length of $7.05 \AA$. In crystals of the title compound, on the other hand, we have in every alternate chain the water molecules replaced by $\mathrm{H}_{2} \mathrm{O}_{2}$; the corresponding axis length here is $14.15 \AA$ (b axis) which is double the value for the hydrate. Other relatively stable pyrophosphate perhydrates exist with formulae such as $\mathrm{Na}_{3} \mathrm{HP}_{2} \mathrm{O}_{7} .2 \mathrm{H}_{2} \mathrm{O}_{2}$ (Wado, Nakatani \& Sato, 1971) and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot x \mathrm{H}_{2} \mathrm{O}_{2}$ (Majewski, 1970). It may be that there is a common structural feature (i.e. chains of $\left.\left(\cdots \mathrm{P}_{2} \mathrm{O}_{7} \cdots \mathrm{H}_{2} \mathrm{O}_{2} \cdots\right)_{n}\right]$ in each of these structures. However, since the ratio of $\mathrm{H}_{2} \mathrm{O}_{2}$ to pyrophosphate anions is greater than one, it implies that if such chains exist there must be extra $\mathrm{H}_{2} \mathrm{O}_{2}$ molecules packed into the structure in other ways, e.g. hydrogen

Table 5. Deviations of atoms from least-squares planes (\AA)

$15.9353 x-0.7097 y-0.0598 z=5.4171$			
C(1)	-0.009	N(12)	0.003
N(11)	0.003	N(13)	0.003

(2) Plane through $\mathrm{C}(2), \mathrm{N}(21), \mathrm{N}(22), \mathrm{N}(23)$ $-1.8708 x+13.7802 y-2.3597 z=5.6666$

$\mathrm{C}(2)$	0.003	$\mathrm{~N}(22)$	-0.001
$\mathrm{~N}(21)$	-0.001	$\mathrm{~N}(23)$	-0.001

(3) Plane through $\mathrm{C}(3), \mathrm{N}(31), \mathrm{N}(32), \mathrm{N}(33)$

$-2.3006 x-1.4067 y+16.6350 z$	$=6.8387$		
$C(3)$	-0.010	$N(32)$	0.001
$N(31)$	0.003	$N(33)$	0.003

Fig. 8. Projection of the structure of potassium oxalate perhydrate showing the hydrogen-bonded chains of, alternately, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$.
bonding the chains together. In the series of oxalate perhydrates studied by Pedersen there exist similar infinite chains of $\left(\cdots \mathrm{C}_{2} \mathrm{O}_{4} \cdots \mathrm{H}_{2} \mathrm{O}_{2} \cdots\right)_{n}$ (Fig. 8) although the manner of packing these together varies with the cation used as, indeed, does the chemical stability of the solids formed.

Deviations of atoms from the least-squares planes are shown in Table 5.

The structural similarity between guanidinium pyrophosphate monohydrate and the title compound (in the former, half the structural chains have $\mathrm{H}_{2} \mathrm{O}_{2}$ substituted by $\mathrm{H}_{2} \mathrm{O}$) suggested that it might be possible to replace more of the $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{H}_{2} \mathrm{O}_{2}$. We have now crystallized a new phase from a solution of guanidinium pyrophosphate in $85 \%(w / w) \mathrm{H}_{2} \mathrm{O}_{2}$ solution. This structure will be investigated in the near future.

We thank Professor J. M. Thomas, FRS, for his encouragement, and Unilever Ltd for their support.
(7) Plane through C(7), $\mathrm{N}(71), \mathrm{N}(72), \mathrm{N}(73)$

$-5.5366 x+13.1689 y-0.5982 z$	$=8.7148$		
$\mathrm{C}(7)$	0.007	$\mathrm{~N}(72)$	-0.003
$\mathrm{~N}(71)$	-0.002	$\mathrm{~N}(73)$	-0.003

(8) Plane through $C(8), N(81), N(82), N(83)$ $15.6843 x-0.0295 y+0.5223 z=5.5460$

$\mathrm{C}(8)$	0.043	$\mathrm{~N}(82)$	-0.014
$\mathrm{~N}(81)$	-0.014	$\mathrm{~N}(83)$	-0.014

References

Adams, J. M. \& Pritchard, R. G. (1976). Acta Cryst. B32, 2438-2440.
Adams, J. M. \& Pritchard, R. G. (1977). Acta Cryst. B33, 3650-3653.
Adams, J. M., Pritchard, R. G. \& Thomas, J. M. (1976). J. Chem. Soc. Chem. Commun. pp. 358-359.

Adams, J. M. \& Ramdas, V. (1976). Acta Cryst. B32, 3224-3227.
Adams, J. M. \& Ramdas, V. (1977). Acta Cryst. B33, 3654-3657.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Hunt, R. H., Leacock, A., Peters, C. W. \& Hecht, K. T. (1965). J. Chem. Phys. 42, 1931-1946.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Leung, K. Y. \& Calvo, C. (1972). Can. J. Chem. 50, 25192526.

Lu, C. S., Hughes, E. W. \& Giguère, P. A. (1941). J. Am. Chem. Soc. 63, 1507-1513.
Majewski, H. W. (1970). Fr. Denarde 2016-050 (Cl. C01b, C11d) 30th April 1970, US Appl. 21st August 1968.
Pedersen, B. F. (1969). Structural Aspects of Perhydrates. Oslo: Universitetsforlaget.
Pedersen, B. F. (1972). Acta Cryst. B28, 1014-1016.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Update of April 1974. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wado. S., Nakatani, H. \& Sato, S. (1971). Japan, 71 08773 (Cl. C01b) 5th March 1971, Appl. 31st May 1966.

[^0]: * This compound proved, unfortunately, to be unstable under prolonged X-ray bombardment, necessitating the use of more than one crystal to collect intensities.

[^1]: * From preliminary work it was noted that photographs taken about \mathbf{b} showed two characteristics: (i) the alternate layer lines were relatively weak, suggesting the possible presence of a sub-cell; (ii) although the $h 0 l$ photograph was free of streaking, on the levels with higher values of k there were streaks along the layer lines with odd h.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33354 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

